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Stopping power of nonmonochromatic heavy-ion clusters with two-ion correlation effects
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The stopping power of an ensemble of a large number of fast heavy ions, moving in a plasma, with a
distribution function which has small spreads both in the physical and in the velocity spaces, is computed on
the basis of a classical dielectric theory, retaining two-ion correlation effects. Averaging procedures in the
configuration space are used to determine the actual friction force acting on the whole system and to evaluate
the vicinage effects when the ion beam is not strictly monochromatic, as it was considered previously. Ap-
proximate analytical scalings with the physical parameters of the considered system of the average vicinage

function and of the decorrelation time are given.

PACS number(s): 52.40.Mj

In the last two decades the investigation of the interaction
of energetic ions with matter under the plasma state has re-
ceived particular attention due to its close concern with the
implementation of thermonuclear reactors where fusion reac-
tions should be realized at a sufficiently high rate to gain net
energy [1]. Recently, it has also been proposed to use cluster
ion beams as highly massive drivers for inertial confinement
fusion (ICF), due to the lower beam current, weaker require-
ment on beam focusing, and smaller range achievable with
this technique [2].

One aspect of particular interest of the slowing-down pro-
cess of a molecular cluster in a plasma is that, during the
process of Coulomb explosion [3] inside the medium, the
charged debris are situated at a small distance (a few A) from
one another and their motion is highly correlated. Then the
stopping power of the whole cluster turns out to be modified
with respect to that of the same amount of uncorrelated
charged debris. The correlated motion of heavy particles can
be expected to occur also when dense conventional heavy-
ion beams are used as drivers, provided their density be com-
parable, at least locally, to that of the cluster debris of the
preceding example.

The effects of two-ion correlations on heavy-ion stopping
power have already been extensively studied in the particular
case of two collinear, equally charged ions moving in a clas-
sical plasma at a given velocity v, [4]. The forces acting on
the two-ion system and produced by the collective response
of the plasma have also been investigated in Ref. [5]. The
enhanced stopping power of close ions has been calculated
both for fast (v,>vy,) and for slow (v,<vy.) projectiles
[6]. The effects of a spatial average of the stopping power of
two arbitrarily oriented ions have been evaluated by Arista
[7].

In the present paper, the stopping power of a group of
N>1 ions, uniformly distributed in the physical space within
a given volume and moving with almost equal velocities, is
computed by applying averaging procedures over the con-
figuration space.

Let us consider a distribution of N charged particles
placed at r;(¢) (j=1,...,N) in the laboratory frame. Let the
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particles move uniformly along straight trajectories, i.e.,
ri(t)=r;+ .(t—to)vj. The external charge distribution can
then be written as

N
Pex(1,1)= 2 Zeg je 8= (x;+ V1)), ¢
j=1
where t,=0 for simplicity. Due to the large mass of the
projectiles with respect to the electrons, and limiting the
analysis to suprathermal velocities (i.e., v =V the
=VT./m,.), we shall assume v;= const.
Let us introduce the position vector of the center of mass
of the ensemble of N particles, RO(t)EEj-V:lM rjtvt)/
S¥ \M;, and its velocity Vo=3Y_,M;v;/3¥_ M. Then,
Ry(2)=Ry+ Vyt. By introducing the position of the jth ion
and its velocity in the center-of-mass frame, i.e.,
Ar;=r;— R, and Av;=v;—V,, Eq. (1) can be written as
N

Pex(T,) =2 Zogg je 5= (Ro+ Vor) = (Arj+Av1)).  (2)
j=1

It is worth defining the following dimensionless variables:

r v ed vfha 3)
— — t - —.
r— Moe ,V— Uthe s "’twpe’(ﬁ_’ T, :fa_’fa n,
Then the linearized Vlasov-Poisson system takes the form

o, i, b1 ofy_

a w2 (42)

N
V2 =— >, Z;8(r—ri(1)+ f d3vf(r,v,t), (4b)

j=1
where Z;=Z 4 ;/Np, ND=nO)\3De> 1, ng is the unperturbed
electron density, and Zg ; is the effective charge of the jth
test ion inside the plasma, which we assume to be constant.
fi(r,v,t) and ¢(r,t) are the electron distribution function
and the electrostatic potential at first order in the expansion
in Z;<<1. As a matter of fact, the linearized theory can be
extended to Z;>1 provided that Z;/V3<1 [4,5]. Here, the
interaction with plasma ions, the effects of Coulomb colli-
sions on the stopping process, and the electromagnetic
part of the interaction are not considered. vy, Ape
=T,/47nye?, and Wpe=Ugpe/Ape are the electron thermal
velocity, Debye length, and plasma frequency, respectively.
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The stopping power of the system, i.e., the friction force
acting in the direction of motion of the center of mass
€,=V,/|Vy|, can then be found as

r=r;(t)

- €9

1 & k
:_(ZT)?’E Z,-ZNDJ‘ d3k k2
i=1

1 ) 1 2
e[k k- (Vo+Av)] T2’ = Z,Z,Np

X Im(

k-&_  [exp{ik-[r;j+(Av;+Av,t]}
de3k o | )
k e[k k- (Vy+Av))]

®)

where r;;=r;—r; and Av;=v;—V, at t=0. In the right-
hand side (rhs) of Eq. (5), the first contribution represents the
stopping power of N uncorrelated charged particles, while
the second term contains the “interference” effect due to
two-ion correlations. Moreover, e(k,w)=1+ (1/k>)W(w/k)
is the longitudinal dielectric function and W(§)=X(§)
+iY (&) the plasma dispersion function [8], X and Y being
its real and imaginary parts, respectively.

The aim of this paper is to compute the average value of
Eq. (5) over given spatial and velocity distributions of the
ensemble of the N particles. Let f(r;;) and g(Av;) be the
distribution functions (both normalized to unity) of the inter-
ionic vectors r;; and of the relative velocity Av; at the initial
time #=0. Let us apply the averaging procedures:

o= [ s, (= [ Pogm ©

to Eq. (5). By assuming, for simplicity, that the distributions
in Eq. (6) are isotropic both in the physical and in the veloc-
ity space, and that the charge states are the same for all the
projectiles, i.e., Z;=Z, for each j, then Eq. (5) can be put in
the following form:

dE 11 - coll
—_ — co. + _ Cco.
< dx>A NS©UY1+(N—1) %

r.
Ay,

+NSP{1+(N—-1)x*},
(7
where the average value of the collective (single particle)

contribution to the stopping power of a single uncorrelated
ion,

2 ~
Scoll(sp)=_ z ND 3k k- €y
u - 3 2
(2m)° Jk<1ik>1) k
XTI 1 8
Mekk Vo+k-Avy) [, ° ®)
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the average value of the collective (single particle) contribu-
tion to the stopping power of an ion due to mutual interfer-
ence effects,

5 R
Z°N D 3 k- €y

S.COH(SP)E _ k
2m)* Ji<t 1) k

int

<eik~r,-j>rij

eik‘Avit
—ik-Av;t
X<€ J >Avj1m< s(k,k-V0+k'Avi) >AVA:

©)
and the collective (single particle) component of the effective
vicinage function [7]

coll(sp)
S int

pooll(sp) =
Xco = TED)
Sio sp

(10)

have been introduced. From inspection of Egs. (7) and (10) it
is argued that the following cases can occur. (i) If the N
charged particles are sufficiently far away from each other,
ie., |r;|>1, the phase factors in Eq. (9) give a negligible
contribution when integrated over k. Then S;;=0 and the
ths of Eq. (7) gives NS, , that is the stopping power of N
uncorrelated ions, each of charge state Z .. (ii) In the case of
strong correlation, that is for [r;/<1 and [Av;/=0 (mono-
chromatic ensemble of test ions), the phase factors are ap-
proximately unitary, x~1, and the rhs of Eq. (7) approaches
N2S,. Then the ensemble of N ions behaves almost as a
single projectile of charge state NZ . (iii) In intermediate
situations 0<y<1 and even small values of y may have
measurable effects provided N is sufficiently large.

Let us specify the distribution functions f(r;) and
g(Av;) relative to a simple physical system. Let the N
equally charged ions be distributed uniformly in a spherical
volume of radius Al/2, that is,

3
f(rij)zs—ﬂ—l‘iH(rij)H(Al‘rij)- (11)

Moreover, let us assume that a small spread in projectile
velocities, around the center of mass speed, be present, that
is,

3
g(Avj)=mH(Avj)H(Av—Avj). (12)

With these positions and by defining «;=kAv;,
pj=cost;, ﬁjEcos’l(k-Avj/kAvj), we can write

e—ik-Avjt
Im<s(k,k-V(,+k-Avj) >Av.
J

B 3 kavd 2f+1d Ycos(a;u;t)
T T 2kAv)* S, YY) PRI XD T Y?

3 J'kAvd 2jJrld (k2+X2)Sin(aj,u,jt)
2kAv)Y Sy N ) RO X r Y2

(13)

In Eq. (13) the first term in the rhs has a resonant nature in
the high velocity limit; it describes the energy dissipation of
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FIG. 1. The resonant part of the effective vicinage function y 0 5 10 15 20 25 30 35 40
for N=10° charged particles is plotted versus Al, for t=10?% Vo

V=10, and Av=10"3 (dotted line), t=10* and Av=10"2 (full
line), 1073 (dashed line). The cold plasma approximation has been
used. All quantities are in dimensionless units.

the projectiles in the interaction with resonant electrons [5].
The second term is nonresonant and describes internal forces
which tend to rearrange the charge distribution. In Ref. [5] it
was shown that, due to momentum conservation, this latter
contribution is exactly zero for two particles moving with the
same velocity. Here, it can be verified that this term is neg-
ligible for Av<<1. Then, we shall consider only the resonant
contributions to the two-ion correlations.

Moreover, since our aim is to investigate the stopping
power of many charged particles in the presence of long-
range correlations, which are due to the excitation of collec-
tive oscillations with wavelength larger than \p,, it is pos-
sible to neglect the individual particle contributions to the k&
integrations in Egs. (8) and (9) and to retain the collective
contributions only. Then, we shall limit the relevant k inte-
grals to values smaller than unity ( collective approximation).

The effective vicinage function in Eq. (10) has been com-
puted by retaining the first thermal corrections in the dielec-
tric function ( warm plasma approximation), i.e., by assum-
ing X(&)~—¢"2-3¢7* In the cold plasma limit [that is,
for X(&)~— &2, corresponding to large projectile veloci-
ties, v,>1], under strong correlation conditions, i.e., for
Al<1 and Av<l1, it is possible to obtain the approximate
expression

B (A2/20)+3(Avet) [ 15— (1/4V)]
InVy— $(Av3/V3)

x~1 (14)

In Fig. 1 the resonant part of the effective vicinage func-
tion of an ensemble of N=1000 particles is plotted as a
function of the maximum spatial extension of the ion cluster
Al, for Au=10"? and 1072, for r=10% and 10, and for
Vo=10. It is observed that, besides the large correlation ef-
fect at small A/ values, small amplitude peaks appear even
for large spatial extension of the cluster, which are reminis-
cent of the oscillating structure of the potential distribution
behind each ion [9]. This effect at large A/ is expected to be
reduced when distributions f(r;;) smoother than Eq. (12) are
considered.

In Fig. 2 the resonant collective part of y is plotted versus
Vy, for different spatial extension of an ensemble of
N=1000 projectiles, Al=10,20,30,60,100, and #=100. The
warm plasma approximation has been used.

FIG. 2. The resonant part of y for N= 10> projectiles is plotted
versus V, for A/=10 (full line), 20 (dashed line), 30 (dot-dashed
line), 60 (densely dotted line), 100 (rarely dotted line),
Av=1073, and t=102. All quantities are in dimensionless units.

The presence of a velocity spread Av makes the vicinage
function, and then the stopping power of the whole system,
depend explicitly on the time. It is possible with simple ar-
guments to estimate the dependence of the decorrelation
time on the system parameters. As has been demonstrated
[4-7], the correlation between two fast ions of the ensemble
occurs when one of the two particles, with velocity v;, falls
inside the Cherenkov cone, with semiaperture ¢
~\3/v,;<1, excited behind the other charged particle [9].
We can estimate the ‘“height” and a typical transverse di-
mension of the cone as h=~mv, and a=~he, respectively.
The relative velocity between the two ions, of the order of
Av, makes them decorrelated after they have become sepa-
rated by more than a linear spatial dimension of the Cheren-
kov cone, which can be taken as h'3(h¢)?P~ho?3. The
decorrelation time can then be estimated as

h¢2/3 . (1)/3
~ ~318 . 2
dec Av 3% Av 15)

where v~V has been assumed.
Figure 3 shows x relative to N=1000 charged particles
versus time, for Av=0.001 and different values of Al
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FIG. 3. The resonant part of y for N=10> particles is plotted
versus ¢, for Vo=11 (a) and V;=36 (b). Three Al values are also
considered: 10 (full lines), 30 (dashed lines), 100 (dotted lines).
Av=1073 and all quantities are in dimensionless units.
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FIG. 4. The stopping power (in GeV/cm) of N=10 Pb ions,
with Z = 50, averaged over the distributions of Egs. (11) and (12),
is plotted as a function of V; (in 107 cm/s), for different values of
Al: 1 pum (dotted line), 2 wm (dashed line), 5 um (dot-dashed
line). The stopping power of 10° uncorrelated ions is also given for
the sake of comparison (full line). The plasma parameters are
n,=10"® cm™3, T,=20 eV (corresponding to Ap,=3X10"2 um
and Z=1). The picture corresponds to r==0.02 ps.

(10,30,100), and of V, (11,36). The decorrelation after a time
interval well approximated by Eq. (15), and slightly increas-
ing with V,, is found.

Finally we present the results of the computation of the
stopping power of N=1000 charged particles in two typical
configurations of physical interest: a Z-pinch plasma and an
ICF relevant plasma. In Fig. 4 the stopping power as a func-
tion of the velocity V, of Pb ions with Z .= 50, moving in a
Z-pinch H plasma with n,=10'® cm™3, T,=20 eV, is shown
for t=0.02 ps. Three values of Al have been considered: 1
pam, 2 um, S um. The stopping power of 1000 uncorrelated
ions is also plotted for the sake of comparison.

In Fig. 5 the stopping power (GeV/cm) versus V,, (cm/s)
of Bi ions with Z.4=80, injected in an ICF relevant H
plasma with n,=3Xx10%2 cm™3, T;=300 eV (Ap,=7.4 A),
at t=0.2 fs, is shown. Here the parameter Al has the values
102, 10%, and 5 X 10® A. The full line corresponds to the case
of 1000 uncorrelated ions.

We note that the basic assumption of constant particle
velocity means that we have treated dE/dx =0 while calcu-
lating dE/dx itself. This hypothesis is justified whenever the
decorrelation time turns out to be much less than the
slowing-down time (i) of the charged projectiles. If we

roughly estimate #4,.~ 10* wp. , and compute Zy on the basis

v, (107 cm/s)

FIG. 5. The stopping power (in GeV/cm) of N=10> Bi ions,
with Z.4=80, is plotted as a function of V, (in 107 cmy/s), for
different values of Al: 10* A (dotted line), 10> A (dashed line),
5% 10° A (dot-dashed line). The full line refers to 10% uncorrelated
Bi ions. A hydrogen ICF relevant plasma has been considered with
n,=3%10%2 cm™3 and T,=300 eV (corresponding to Ap,=7.4 A
and Z=6). The picture corresponds to t=0.2 fs.

of the Coulomb collisional theory (e.g., see Ref. [10]), we
get tec/tsg=~10"*, for Vy=3X10° cm/s, in the case of Fig.
4, and tye./tyq=~3%1073, for V;=6Xx10° cm/s, in the case
of Fig. 5. These results agree with our assumption and show
that the enhanced stopping power due to correlations affects
the very initial part of the interaction. Therefore energy loss
measurements of an ion ensemble (e.g., a cluster) through a
plasma layer thinner than the corresponding range should be
more appropriate for an experimental observation of the cor-
relation effects.

In this paper the stopping power of an ensemble of a large
number of projectiles in a warm plasma has been calculated
by performing averages in the configuration space. The re-
sults of our analysis can be applied whenever high projectile
concentrations are realized, at least locally. In particular, in
the case of ICF plasmas the relevant beam densities are more
likely to occur during the Coulomb explosion of molecular
clusters in the plasma. In these cases an appreciable enhance-
ment of the stopping power of the ensemble of ions is dem-
onstrated, mostly during the initial part of the interaction.
The existence of a velocity spread Av, around the mean
speed V|, introduces a decorrelation time which turns out to
be an increasing function of A/, roughly proportional to
Av ™!, and almost independent of V.
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